Heath/Medical Records: Blockchain has the potential to standardize secure electronic medical record sharing across providers in a less burdensome way than previous approaches.5 It offers the ability to create a decentralized record management system that reduces the need for another organization between the patient and the records to manage access. Blockchain-enabled healthcare applications offer potential benefits such as instantly verifying the authenticity of prescriptions or automatically identifying potential adverse drug interactions.
However, there are experiments of producing databases with Blockchain technology, with BigchainDB being the first major company in the field. The creators took an enterprise-class distributed database and built their technology on top of it, while adding the three key attributes of the Blockchain: decentralization, immutability and the ability to register and transfer assets. Whether what they have created is useful remains to be determined.
In the example above (a "public Blockchain"), there are multiple versions of you as “nodes” on a network acting as executors of transactions and miners simultaneously. Transactions are collected into blocks before being added to the Blockchain. Miners receive a Bitcoin reward based upon the computational time it takes to work out a) whether the transaction is valid and b) what is the correct mathematical key to link to the block of transactions into the correct place in the open ledger. As more transactions are executed, more Bitcoins flow into the virtual money supply. The "reward" miners get will reduces every 4 years until Bitcoin production will eventually cease (although estimates say this won't be until 2140!). Of course, although the original Blockchain was intended to manage Bitcoin, other virtual currencies, such as Ether, can be used.
Located in Brooklyn, Consensys is one of the foremost companies globally that is developing a range of applications for Ethereum. One project they are partnering on is Transactive Grid, working with the distributed energy outfit, LO3. A prototype project currently up and running uses Ethereum smart contracts to automate the monitoring and redistribution of microgrid energy. This so-called “intelligent grid” is an early example of IoT functionality.
With many practical applications for the technology already being implemented and explored, blockchain is finally making a name for itself at age twenty-seven, in no small part because of bitcoin and cryptocurrency. As a buzzword on the tongue of every investor in the nation, blockchain stands to make business and government operations more accurate, efficient, and secure.
Disclaimer: Investing in cryptocurrencies and Initial Coin Offerings ("ICOs") is highly risky and speculative, and this article is not a recommendation by Investopedia or the writer to invest in cryptocurrencies or ICOs. Since each individual's situation is unique, a qualified professional should always be consulted before making any financial decisions. Investopediamakes no representations or warranties as to the accuracy or timeliness of the information contained herein. As of the date this article was written, the author owns less than 1 BTC, and no positions in any of the other companies mentioned in this piece. Investopedia does not make recommendations about particular stocks. 
Every time a new transaction is initiated, a block is created with the transactions details and broadcast to all the nodes. Every block carries a timestamp, and a reference to the previous block in the chain, to help establish a sequence of events. Once the authenticity of the transaction is established, that block is linked to the previous block, which is linked to the previous block, creating a chain called blockchain. This chain of blocks is replicated across the entire network, and all cryptographically secured which makes it not only challenging, but almost impossible to hack. I say almost impossible because it would take some significant computational power to even attempt something like that. 
In the past when a claim is made, all checks would be carried out by humans, which can be time-consuming and leaves room for human error. This will become unnecessary, as checks to ensure that all criteria have been met, and can be done automatically using the Blockchain. Once all obligations are fulfilled, the resulting payout is automatic. This can all be done using minimum human involvement.
In Bitcoin’s early days, and we mean really early, the practical way to obtain bitcoins was by mining. Mining is the process by which newly minted bitcoins are released. Back then, the difficulty of the network was low enough that regular computers’ processing units (CPUs) and graphic processing units (GPUs) could mine bitcoins at very little cost.
This technology has great implications for the financial services industry as well. On implementing a decentralized database or a public registry like blockchain to verify the identities of all parties, no longer will we need to have our transactions stay “pending” for three days. Settlement would be instantaneous since the transaction and settlement would happen simultaneously once the ledger is updated. There are many such use cases.

A number of countries are undertaking blockchain-based land registry projects. Honduras was the first government to announce such an initiative in 2015, although the current status of that project is unclear. This year, the Republic of Georgia cemented a deal with the Bitfury Group to develop a blockchain system for property titles. Reportedly, Hernando de Soto, the high-profile economist and property rights advocate, will be advising on the project. Most recently, Sweden announced it was experimenting with a blockchain application for property titles.
Peer to peer Bitcoin lending websites with listings from various borrowers are another option. Bitbond is such a peer-to-peer lending site. Borrowers publish funding requests and you can contribute to their loan. You can fund small portions of many loans and thereby diversify default risk. Bitcoin loans usually work the same way as fiat currency loans. The borrower gets a certain amount of money over a specified time and repays the money with interest. There are two things you need to be aware of when you lend Bitcoins. The site needs to be trustworthy and the borrower needs to be trustworthy. When the site assesses the creditworthiness of their applicants the information given about borrowers can be more credible.
As is well known, digital information can be infinitely reproduced — and distributed widely thanks to the internet. This has given web users globally a goldmine of free content. However, copyright holders have not been so lucky, losing control over their intellectual property and suffering financially as a consequence. Smart contracts can protect copyright and automate the sale of creative works online, eliminating the risk of file copying and redistribution.
Blockchain forms the bedrock for cryptocurrencies like Bitcoin. As we explored earlier, currencies like the U.S. dollar are regulated and verified by a central authority, usually a bank or government. Under the central authority system, a user’s data and currency are technically at the whim of their bank or government. If a user’s bank collapses or they live in a country with an unstable government, the value of their currency may be at risk. These are the worries out of which Bitcoin was borne. By spreading its operations across a network of computers, blockchain allows Bitcoin and other cryptocurrencies to operate without the need for a central authority. This not only reduces risk but also eliminates many of the processing and transaction fees. It also gives those in countries with unstable currencies a more stable currency with more applications and a wider network of individuals and institutions they can do business with, both domestically and internationally (at least, this is the goal.)

I would like to second the motion that some time be spent cleaning up the grammar. Great opportunities to educate about great topics can be squandered through inattention to the quality of presentation. I’ve tried reading this several times and have to agree that it’s quite painful to get through–not because it’s inaccurate, but simply because it’s garbled in critical spots. One suggestion is to let a skilled copy editor review text prior to its release. Sites that don’t proofread their content run the risk of being dismissed as less than reliable. Often I want to refer others interested in learning about CC to specific information sites but can’t yet recommend this one.
In some cases, earning bitcoin is the most practical option for someone if their business is already operating. There is no real transition most businesses need to undergo in order to earn bitcoin: It is as simple as providing the option for people to pay with it with services like BTCPay or BitPay. You can even just add a BTC wallet address to an invoice.
Blockchain will play a major role in the roll out of IoT, but will also provide ways of guarding against hackers. Because it is built for decentralized control, a security scheme based on it should be scalable enough to cover the rapid growth of the IoT. Moreover, Blockchain’s strong protection against data tampering will help prevent a rogue device from disrupting a home, factory or transportation system by relaying misleading information.
So, what does blockchain technology bring to the table that current payment networks don't? For starters, and as noted, it's decentralized. That's a fancy way of saying that there's no central hub where transaction data is stored. Instead, servers and hard drives all over the world hold bits and pieces of these blocks of data. This is done for two purposes. First, it ensures that no one party can gain control over a cryptocurrency and blockchain. Also, it keeps cybercriminals from being able to hold a digital currency "hostage" should they gain access to transaction data.
I can see that blockchain has at least one vulnerability. Sure – decentralization and reconciliation with encryption is fine. But the one vulnerability is the interconnecting network. You foul that up and your blockchain paradigm is now vulnerable. Each node could then be compromised so that reconciliation is impossible. Blockchain does not accomodate the vulnerabilities of the infrastructure which it is using.
On 3 January 2009, the bitcoin network was created when Nakamoto mined the first block of the chain, known as the genesis block.[19][20] Embedded in the coinbase of this block was the following text: "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks."[10] This note has been interpreted as both a timestamp and a comment on the instability caused by fractional-reserve banking.[21]:18