Blockchain is a decentralized digital ledger (a continuously growing list of electronic records) of transactions kept over time and secured using cryptography (a kind of algorithmic code). Blockchain ledger data is distributed across a network of computers. Its users can directly interact with stored data in real-time without the need for an intermediary (a “middle-man” or distributor) to authenticate transactions. The technology provides an independent, tamper-resistant, and transparent platform for parties within the blockchain to securely store, transmit, and process sensitive information.

The blockchain is maintained by a peer-to-peer network. The network is a collection of nodes which are interconnected to one another. Nodes are individual computers which take in input and performs a function on them and gives an output. The blockchain uses a special kind of network called “peer-to-peer network” which partitions its entire workload between participants, who are all equally privileged, called “peers”. There is no longer one central server, now there are several distributed and decentralized peers.

After spending two years researching blockchain and the evolution of advanced ledger technologies, I still find a great spectrum of understanding across my clients and business at large about blockchain. While ledger superpowers like Hyperledger, IBM, Microsoft and R3 are emerging, there remains a long tail of startups trying to innovate on the first generation public blockchains. Most of the best-selling blockchain books confine themselves to Bitcoin, and extrapolate its apparent magic into a dizzying array of imagined use cases. And I'm continuously surprised to find people who are only just hearing about blockchain now.
Either a GPU (graphics processing unit) miner or an application-specific integrated circuit (ASIC) miner. These can run from $500 to the tens of thousands. Some miners--particularly Ethereum miners--buy individual graphics cards (GPUs) as a low-cost way to cobble together mining operations. The photo below is a makeshift, home-made mining machine. The graphics cards are those rectangular blocks with whirring circles. Note the sandwich twist-ties holding the graphics cards to the metal pole. This is probably not the most efficient way to mine, and as you can guess, many miners are in it as much for the fun and challenge as for the money.

It’s decentralized and brings power back to the people. Launched just a year after the 2008 financial crises, Bitcoin has attracted many people who see the current financial system as unsustainable. This factor has won the hearts of those who view politicians and government with suspicion. It’s no surprise there is a huge community of ideologists actively building, buying, and working in the cryptocurrency world.

Imagine two entities (eg banks) that need to update their own user account balances when there is a request to transfer money from one customer to another. They need to spend a tremendous (and costly) amount of time and effort for coordination, synchronization, messaging and checking to ensure that each transaction happens exactly as it should. Typically, the money being transferred is held by the originator until it can be confirmed that it was received by the recipient. With the blockchain, a single ledger of transaction entries that both parties have access to can simplify the coordination and validation efforts because there is always a single version of records, not two disparate databases.
Nakamoto is estimated to have mined one million bitcoins[27] before disappearing in 2010, when he handed the network alert key and control of the code repository over to Gavin Andresen. Andresen later became lead developer at the Bitcoin Foundation.[28][29] Andresen then sought to decentralize control. This left opportunity for controversy to develop over the future development path of bitcoin.[30][29]