Transactions placed through a central authority can take up to a few days to settle. If you attempt to deposit a check on Friday evening, for example, you may not actually see funds in your account until Monday morning. Whereas financial institutions operate during business hours, five days a week, blockchain is working 24 hours a day, seven days a week. Transactions can be completed in about ten minutes and can be considered secure after just a few hours. This is particularly useful for cross-border trades, which usually take much longer because of time-zone issues and the fact that all parties must confirm payment processing.
In September 2015, the establishment of the peer-reviewed academic journal Ledger (ISSN 2379-5980) was announced. It covers studies of cryptocurrencies and related technologies, and is published by the University of Pittsburgh.[231] The journal encourages authors to digitally sign a file hash of submitted papers, which will then be timestamped into the bitcoin blockchain. Authors are also asked to include a personal bitcoin address in the first page of their papers.[232][233]
Small wonder that Bitcoin emerged in 2008 just after Occupy Wall Street accused big banks of misusing borrowers’ money, duping clients, rigging the system, and charging boggling fees. Bitcoin pioneers wanted to put the seller in charge, eliminate the middleman, cancel interest fees, and make transactions transparent, to hack corruption and cut fees. They created a decentralized system, where you could control your funds and know what was going on.
People need to understand that “blockchain” is NOT the same thing as “bitcoin”. Bitcoin was the first blockchain system designed, but there have been a number of others since then which are very different – they were designed by different people, often for different purposes. The ones moving into the business world today are NOT systems for electronic money. They are “ledger” systems that are used to replace existing methods, almost none of which are electronic money. Examples of such blockchain systems are Hyperledger (which has several different schemes, the most popular being Hyperledger Fabric), Ethereum, R3 Corda, and some others. They were NOT designed by “some guy” somewhere – they were designed by highly capable groups of people who are in the business of designing things for use by corporations to operate their businesses. Several of these are in open-source projects, where they are being developed jointly by many people, and are subject to study and analysis by all of them. There is work in early stages to define regional and international standards that will define some requirements for the blockchains. (I happen to be involved with some of those standards activities, as well as development on one of the blockchain systems.)
Blockchain may make selling recorded music profitable again for artists by cutting out music companies and distributors like Apple or Spotify. The music you buy could even be encoded in the blockchain itself, making it a cloud archive for any song purchased. Because the amounts charged can be so small, subscription and streaming services will become irrelevant.
Now imagine that I pose the "guess what number I'm thinking of" question, but I'm not asking just three friends, and I'm not thinking of a number between 1 and 100. Rather, I'm asking millions of would-be miners and I'm thinking of a 64-digit hexadecimal number. Now you see that it's going to be extremely hard to guess the right answer. (See also: What is Bitcoin Mining?)
This technology has great implications for the financial services industry as well. On implementing a decentralized database or a public registry like blockchain to verify the identities of all parties, no longer will we need to have our transactions stay “pending” for three days. Settlement would be instantaneous since the transaction and settlement would happen simultaneously once the ledger is updated. There are many such use cases.
In the financial world the applications are more obvious and the revolutionary changes more imminent. Blockchains will change the way stock exchanges work, loans are bundled, and insurances contracted. They will eliminate bank accounts and practically all services offered by banks. Almost every financial institution will go bankrupt or be forced to change fundamentally, once the advantages of a safe ledger without transaction fees is widely understood and implemented. After all, the financial system is built on taking a small cut of your money for the privilege of facilitating a transaction. Bankers will become mere advisers, not gatekeepers of money. Stockbrokers will no longer be able to earn commissions and the buy/sell spread will disappear.
Even recent entrants like Uber and AirBnB are threatened by blockchain technology. All you need to do is encode the transactional information for a car ride or an overnight stay, and again you have a perfectly safe way that disrupts the business model of the companies which have just begun to challenge the traditional economy. We are not just cutting out the fee-processing middle man, we are also eliminating the need for the match-making platform.

Blockchain technology accounts for the issues of security and trust in several ways. First, new blocks are always stored linearly and chronologically. That is, they are always added to the “end” of the blockchain. If you take a look at Bitcoin’s blockchain, you’ll see that each block has a position on the chain, called a “height.” As of February 2019, the block’s height had topped 562,000.
Every time a new transaction is initiated, a block is created with the transactions details and broadcast to all the nodes. Every block carries a timestamp, and a reference to the previous block in the chain, to help establish a sequence of events. Once the authenticity of the transaction is established, that block is linked to the previous block, which is linked to the previous block, creating a chain called blockchain. This chain of blocks is replicated across the entire network, and all cryptographically secured which makes it not only challenging, but almost impossible to hack. I say almost impossible because it would take some significant computational power to even attempt something like that. 

Lend directly to someone you know. This allows you to assess personally, whether you regard the borrower as trustworthy. Then the two of you only need to agree on the terms like duration and interest rate and off you go. The drawback is, however, that you probably will not have too many acquaintances who match your amount, duration and interest rate requirements. But it's a nice way to earn Bitcoins.

Mining rewards are paid to the miner who discovers a solution to the puzzle first, and the probability that a participant will be the one to discover the solution is equal to the portion of the total mining power on the network. Participants with a small percentage of the mining power stand a very small chance of discovering the next block on their own. For instance, a mining card that one could purchase for a couple thousand dollars would represent less than 0.001% of the network's mining power. With such a small chance at finding the next block, it could be a long time before that miner finds a block, and the difficulty going up makes things even worse. The miner may never recoup their investment. The answer to this problem is mining pools. Mining pools are operated by third parties and coordinate groups of miners. By working together in a pool and sharing the payouts amongst participants, miners can get a steady flow of bitcoin starting the day they activate their miner. Statistics on some of the mining pools can be seen on

After spending two years researching blockchain and the evolution of advanced ledger technologies, I still find a great spectrum of understanding across my clients and business at large about blockchain. While ledger superpowers like Hyperledger, IBM, Microsoft and R3 are emerging, there remains a long tail of startups trying to innovate on the first generation public blockchains. Most of the best-selling blockchain books confine themselves to Bitcoin, and extrapolate its apparent magic into a dizzying array of imagined use cases. And I'm continuously surprised to find people who are only just hearing about blockchain now.

Bitcoin, along with other cryptocurrencies, has been identified as an economic bubble by at least eight Nobel Memorial Prize in Economic Sciences laureates, including Robert Shiller,[189] Joseph Stiglitz,[190] and Richard Thaler.[191][13] Noted Keyensian economist Paul Krugman wrote in his New York Times column criticizing bitcoin, calling it a bubble and a fraud;[192] and professor Nouriel Roubini of New York University called bitcoin the "mother of all bubbles."[193] Central bankers, including former Federal Reserve Chairman Alan Greenspan,[194] investors such as Warren Buffett,[195][196] and George Soros[197] have stated similar views, as have business executives such as Jamie Dimon and Jack Ma.[198]
I would like to second the motion that some time be spent cleaning up the grammar. Great opportunities to educate about great topics can be squandered through inattention to the quality of presentation. I’ve tried reading this several times and have to agree that it’s quite painful to get through–not because it’s inaccurate, but simply because it’s garbled in critical spots. One suggestion is to let a skilled copy editor review text prior to its release. Sites that don’t proofread their content run the risk of being dismissed as less than reliable. Often I want to refer others interested in learning about CC to specific information sites but can’t yet recommend this one.
The bitcoin blockchain is a public ledger that records bitcoin transactions.[67] It is implemented as a chain of blocks, each block containing a hash of the previous block up to the genesis block[a] of the chain. A network of communicating nodes running bitcoin software maintains the blockchain.[31]:215–219 Transactions of the form payer X sends Y bitcoins to payee Z are broadcast to this network using readily available software applications.